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Biaxial melting of the nematic order under a strong electric field
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We study the action of a strong electric field on a nematic, topologically stabilized with directorn perpen-
dicular toE. Above a threshold field the nematic order on the cell midplane is ‘‘melted’’ and rapidly recon-
structed withniE. In a Landau–de Gennes model, we show that the observed transient ‘‘melted’’ state is a
biaxial nematic and not an isotropic liquid.
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Nematic liquid crystals are fluids with orientational ord
described by a tensor order parameterQ. In the ground state
Q is uniform and uniaxial,Qi j 5S(ninj2d i j /3) wheren is
the director andS is the scalar order parameter. Nematics
easily oriented by electric fields, due to their weak elastic
and strong dielectric anisotropyD« ~we supposeD«.0, fa-
voring nuuE). The length scale of the director distortion, th
electric correlation lengthjE @1#, is macroscopic for moder
ate fields (jE;200 nm forD«510 «0 andE51 V/mm).

The field coupling withS induces an order variationdS
5S2S0 . Sbeing much ‘‘stiffer’’ @1# thann, S relaxes at the
scale of the nematic coherence lengthjN ~a few nano-
meters!. Strong fields enhance the bulk order@2# or induce
SÞ0 in the isotropic melt@3#. By symmetry, the induced
order tensorQ is uniaxial like the spontaneous one.

When E'n, we expect field induced disorder and som
biaxiality—the field breaks the symmetry of the phase. Ho
ever, experimentally it is difficult to stabilizen'E—the di-
electric torque favorsniE. Even strong surface anchorin
does not keepn'E—for high enough fieldsjE'jN!L (L is
the surface extrapolation length@1#! and the anchoring is
broken@4#. So far, field induced disorder and biaxiality ha
been reported@5# only in the isotropic phase, perturbing th
surface induced order.

The nematic order decreases and even vanishes u
strong topological constraint, e.g. in the core of a 1
strength disclination line or in a point defect@1#. Due to the
broken symmetry, the core is not isotropic (S50) but be-
comes strongly biaxial@6#—Q varies continuously in the
core, without vanishing, enabling an escape from the to
logical constraint imposed on the director.

Here, to study the nematic behavior under a strong e
tric field E'n, we use a thin cell with inverse pretilt. B
symmetry,n'E in the middle of the cell. Above a threshol
field we observe transient ‘‘melting’’ ofS all over the cell
midplane, with escape from the topological constraint, f
lowed by a fast reconstruction of the order withn'E. In a
Landau–de Gennes model, we show that the transient me
state is a biaxial nematic and not an isotropic liquid.

Our experimental cells are 1.5mm thick with inverse
pretilt c ~texture U in Fig. 1!, ranging from 2° ~brushed
polymer! to 30° ~SiO evaporation!, filled with the nematic
pentyl cyanobiphenyl~5CB Merck!. The fieldE<30 V/mm
is applied along the cell normal in short ac burstsf
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>100 kHz to avoid polar effects! of square envelope, with
duration t51 ms–10 ms. In the two boundary regions,n
reorients alongE, while in the center of the celln'E and the
electric torque vanishes~textureW in Fig. 1!. This results in
a thin (;2jE) p wall of splay bend, blocked in the middl
of the cell. At long term, the wall could migrate to one of th
boundaries, breaking eventually the surface anchoring@4#.
However, forE.2 V/mm the wall propagation is very slow
~minutes!, and on the time scale of our experiments the te
ture W is dynamically stabilized~in this geometry, the an-
choring cannot break@4#!.

Under field, a large excess energy is concentrated in
wall, compared to the textureH ~Fig. 1! realized with the
same anchorings. However, a continuous transition ofW into
H is impossible. Instead, the transition can be intermedia
by defects—ap-disclination line, propagating along th
wall, replaces locallyW by H, the melted order in the line
core enabling the topological constraint escape.

Let us first suppose that there is no defect propagation.
increasing the field,S in the wall should decrease, due to th
field action and the strong distortion. At high enough fie
we expect a transient melting ofS all over the wall plane,
followed by rapid reconstruction of the nematic order, w
niE to give the textureH. In this way, the transient ‘‘defect‘‘
plane enables a fast uniform escape from the topolog
constraint@7#, instead of a local transition by defect lines.

To detect thisW to H transition, we observe the textur
after the pulse. On field removal,W relaxes back to the
highly birefringent textureU, while the textureH relaxes to a
half-turn twisted textureT ~Fig. 1!, optically almost isotropic
in thin cells @8#. Qualitatively, we observe two different be
haviors, presented in Fig. 2, as a function ofE andt. Up to
a critical fieldEc57.8 V/mm, we observeW to H transition

FIG. 1. Textures realized in the inverse pretilt cell without fie
(U,T) and under field (W,H).
©2003 The American Physical Society10-1
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by defect propagation, localized in small circular doma
@photograph~a! in Fig. 2#. The twisted regions first appear
t5t0 and grow with increasingt, confirming defect propa-
gation. Fort>t1, all the pixel transits to the textureH ~and
thenT) by defect propagation.

Above Ec , t5t1 and there is no more coexistence ofU
andT after the pulse. Fort,t0 whole pixel ~several mm2)
relaxes back toU, for t.t0 it changes toT @photograph~b!
in Fig. 2#, indicating a uniform melting of the wall unde
field. This behavior disagrees with defect propagation,
plying a strong stepwise increase of the defect velocity~up to
10 m/s!.

The W to H transition can also be detected in real tim
from the cell birefringence. Optically,W differs from H by
the additional birefringence of the wall (d;DnjE;1 nm).
We measure it with an experimental setup@9# mounted on a
polarizing microscope, with a good resolution in time (1ms)
and ind ~0.01 nm!.

For E,Ec ~Fig. 3, curvea! d saturates to a first level
corresponding to the textureW, and then slowly
(Dta;10 ms) relaxes to a lower value~textureH, the wall
has disappeared!. Dta increases with the observation are
indicating a transition by defect propagation. ForE slightly
aboveEc ~Fig. 3, curveb!, the wall disappears much faste
(Dtb;100 ms). Dtb is independent of the observed are
indicating a synchronous transition over the whole pixel~ei-
ther by uniform melting or by spinodal decomposition!. After
the pulse, the texture relaxes uniformly toU or to T, for
pulse duration, respectively, in the first or in the second p
teau in Fig. 3. Finally, forE@Ec , the wall melting cannot be

FIG. 2. Indirect observation of theW to H transition under field
at Tc2T55 K; ~a! defect propagation forE,Ec , ~b! uniform
melting of the wall forE.Ec .

FIG. 3. Direct observation of theW to H transition from the cell
birefringence;~a! defect propagation forE,Ec , ~b! uniform tran-
sition atE51.03Ec .
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observed directly—the transition happens during the bulk
laxation and it is masked by the residual bulk birefringen

Our experimental results can be understood in the fram
of the Landau–de Gennes approach, minimizing the free
ergy F(Q,“Q) @1#. In our geometry, the surfaces alignn in
the x-z plane. The electric fieldEiz induces some biaxiality
but keepsxz as a mirror plane for the texture. With thi
symmetry, the most general form of the biaxial traceless t
sor Q is

Q5
1

3 S 2a2A3b cos 2u 0 A3b sin 2u

0 2a 0

A3b sin 2u 0 2a1A3b cos 2u
D .

~1!

Hereu ~Fig. 1! describes the rotation ofQ aroundy ~one
of its main axes!, while a andb define together the modulu
S5Aa21b2 and the biaxiality @proportional to b(3a2

2b2)/S3] of the order parameter.
The condensation energy density becomes

Fc5
a~T2T* !

2
~a21b2!1

B

3
a~a223b2!1

C

4
~a21b2!2,

~2!

where the numerical values for 5CB are@10# a
'0.13 J/(cm3 K), B'21.6 J/cm3, andC'3.9 J/cm3.

The distortion energy density in one-constant approxim
tion is @11#

Fd5
L

2
] iQjk] iQjk5

L

3 F S ]a

]z D 2

1S ]b

]z D 2

14b2S ]u

]zD 2G
~3!

with L5K/2S2'8 pN.
The electric energy density is

Fe5
1

2
DzEz5

Dz
2

2 F«'01
«a0

3
~12a1A3b cos 2u!G21

,

~4!

where D is the electric displacement and«'0'3
310211 F/m and«a0'18310211 F/m are the permittivities
of 5CB atS51 @12#.

Let us first consider the condensation energy of a unifo
nematic with fixed orientationu[0 andE50, presented in
Fig. 4. The three minimax, y, and z correspond to the
uniaxial equilibrium states of the nematic, withS5S0(T),
u50 and with n, respectively alongx (a52S/2, b
52A3S/2), y(a5S, b50), or z(a52S/2, b5A3S/2).
The maximumI at a5b50 represents the isotropic sta
(S50). Along X, Y, andZ the Q tensor is uniaxial, either
prolate (S.0 on theX,Y,Z positive side! or oblate (S,0 on
the X,Y,Z negative side!. The three saddle pointsx8, y8,
andz8 represent the known unstable uniaxial solutions w
S'2S0/2. All the other regions in the diagram represe
biaxial nematic states, never realized without constraint.
note that the same results are obtained by fixingu at u
5p/2 and changing the sign ofb.

In Fig. 5, we show the energy of the uniform nematic w
u[0 under strong fieldEiz. The statez ~with niz) remains
0-2
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uniaxial, with order parameterS.S0 enhanced by the field
In the metastable statesx and y, the order decreases an
becomes biaxial. WhenE is increased,x andy reach, respec-
tively, the saddle pointsy8 andx8, and disappear at a critica
field Ecu . From the condition of double extrema forFc
1Fe , we find algebraically@13#

Ecu5A 3B

4«a0
S 4a~T2T* !

C
2

B2

C2D '67 V/mm

at Tc2T55 K.
WhenE.Ecu , one expects a field driven transition fro

the x or y state to the stablez state. Due to the ‘‘frozen’’
orientation (u[0), this transition is realized by variation o
the Q eigenvalues. TheQ trajectory~Fig. 5! explores a con-
tinuum of biaxial states and passes through a uniaxial ob
state@14#.

In our experiments, we expect the same kind of transit
from x to z in the wall midplane, where the topological co
straint forbids the rotation ofQ. Two phenomena help th
transition and decrease the critical field for the wall meltin
the nonuniformity of the field and the distortion in the wa
Under field most of the sample is homeotropic, withDz
'« iU/d. In the middle of the wall, the field isEz5Dz /«zz
'(« i /«')U/d; three times stronger for 5CB at room tem
perature than the average fieldE5U/d.

The distortion in the wall decreases the nematic order,
to estimate this effect we need to consider the space varia
of a, b, and u. We solve numerically the Euler-Lagrang
equations at fixedDz values using a relaxation algorithm an
we obtain U by integrating Dz /«zz. We impose strong
boundary conditionsaS52S0/2, bS5A3S0/2, and uS
5p/26c. These conditions influence only the two th

FIG. 4. Condensation energy map for a uniform nematic w
fixed orientationu[0 ~darker gray corresponds to lower energy!.
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(;jE) regions close to the surfaces, wherea andb relax to
their bulk equilibrium values under field andu goes tou
'0. In Fig. 6, we present in the (b cos 2u, b sin 2u) space
the numerically calculated pathQ(z). For simplicity, we do
not present the surface regions part of the path nora(z)
(a'2S0/2 and approximately constant!. The circleb5b0

5S0A3/2 represents the equilibrium uniaxial prolate sta
with S5S0 and simple director rotation. The center of th
diagramD corresponds to the uniaxial oblate state withS
,0. All the other states inside the circleb0 are biaxial~pro-
late close tob0, oblate close toD). Far from the wall, the
nematic is in the statez (u50 or p).

FIG. 5. Total energy map for a uniform nematic under stro
field.

FIG. 6. Numerical results for the equilibrium and transientQ(z)
trajectories across the wall as a function of the field. The equi
rium states are forbidden in the shaded region:E50 ~line!; E
5Ecd/2 ~open circles!; E5Ecd ~squares!; and E51.03Ecd ~closed
circles!.
0-3
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For weak fields~Fig. 6, open circles! Q explores a loop
close tob0, starting from the statez(niz), crossing the state
x(nix), and finishing again atz, but now withni2z, accu-
mulating a ‘‘phase shift’’Du5p across the wall. Each poin
on the curve corresponds to a step 0.1jE alongz, to visual-
ize “Q. For higher fields, up to a thresholdEcd
515.2 V/mm ~Fig. 6, squares!, the path goes deeper in th
biaxial region, especially foru5p/2. Finally, aboveEcd ,
the Euler-Lagrange equations have no solution for the
posed boundary conditions. In the present static model,
corresponds to a first-order jump of the textureW toward the
homeotropic stateH ~the pointz, with niz andS.S0 due to
the field-induced order!. A dynamical model, to be presente
elsewhere, confirms the first-order transition, with the lo
collapsing rapidly toward the pointz. The intermediate non
equilibrium trajectories~e.g., Fig. 6, closed circles! explore
all the biaxial states of the diagram. When the loop cros
the oblate uniaxial stateD, the phase shift across the wa
jumps from Du5p to Du50, removing the initially im-
posed topological constraint.

The experimentally observed thresholdEc should be com-
pared with the thresholdEcd , calculated for the biaxial melt
ing of the distorted wall, four times lower than the valueEcu
calculated for uniform nematic. The large decrease ofEcd
~compared toEcu) results from the strong electric torqu
applied on the nematic in the regions withuuu'p/4, and
elastically transmitted to the middle of the wall, where t
nematic order is already destabilized by the strong distor
and the direct action of the electric field. However, atTc
.
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2T55 K, Ecd is still two times higher thanEc . This dis-
agreement can be attributed to the known limitations of
Landau–de Gennes approach, namely, the bad converg
of the Eq.~2! series, needing higher-order terms@2#. More-
over,Ec /Ecd varies with the temperature~to be presented in
a forthcoming paper!, confirming the quantitative disagree
ment between the present model and the experiment.
observe qualitatively the same trends and similar values
Ec andEcd for several other nematics with highD«/e' an-
isotropy, with biaxial melting of the wall observed forEc

,30 V/mm even at low temperatures (Tc2T525 K).
The shaded region in Fig. 6 corresponds to a trans

state of the wall, melted into an unstable highly biaxial sta
The melted wall can be considered as a ‘‘core’’ of a transi
nematic two-dimensional~2D! ‘‘defect,’’ nematic analog to
the permanent 2D defects already reported for the sme
phase@15#. This 2D core enables biaxial escape~in the time!
from the imposed topological constraint, similar to what ha
pens~in the space! around the 1D core of 1/2 strength di
clination line.

To conclude, we realize and observe experimentally a
axial melting transition in nematic liquid crystals und
strong topological constraint and destabilizing electric fie
E'n. A qualitative agreement with the experiment is o
tained in a Landau–de Gennes model. Even far away fr
the clearing temperature, this rapid transition~micro second
time scale! has moderate field threshold (,30 V/mm),
showing potential for rapid nematic applications@16#.
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