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Biaxial melting of the nematic order under a strong electric field
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We study the action of a strong electric field on a nematic, topologically stabilized with diregmen-
dicular toE. Above a threshold field the nematic order on the cell midplane is “melted” and rapidly recon-
structed withn|E. In a Landau—de Gennes model, we show that the observed transient “melted” state is a
biaxial nematic and not an isotropic liquid.
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Nematic liquid crystals are fluids with orientational order =100 kHz to avoid polar effectsof square envelope, with
described by a tensor order paraméperin the ground state, duration7=1 us—10 ms. In the two boundary regions,
Q is uniform and uniaxialQ;;=S(njn;— §;;/3) wheren is  reorients alonde, while in the center of the ceiil E and the
the director andis the scalar order parameter. Nematics areelectric torque vanishegextureW in Fig. 1). This results in
easily oriented by electric fields, due to their weak elasticitya thin (~2&g) o wall of splay bend, blocked in the middle
and strong dielectric anisotropye (we supposé\e>0, fa-  of the cell. At long term, the wall could migrate to one of the
voring n||E). The length scale of the director distortion, the boundaries, breaking eventually the surface anchajifig
electric correlation lengtl§g [1], is macroscopic for moder- However, forE>2 V/um the wall propagation is very slow
ate fields €z~200 nm forAe=10¢q andE=1 V/um). (minuteg, and on the time scale of our experiments the tex-

The field coupling withS induces an order variatiodAS  ture W is dynamically stabilizedin this geometry, the an-
=S—S,. Sheing much “stiffer”"[1] thann, Srelaxes at the choring cannot breaf4]).
scale of the nematic coherence lengij (a few nano- Under field, a large excess energy is concentrated in the
meters. Strong fields enhance the bulk ord@] or induce wall, compared to the texturdl (Fig. 1) realized with the
S#0 in the isotropic melf3]. By symmetry, the induced same anchorings. However, a continuous transitiowafito
order tensoKQ is uniaxial like the spontaneous one. H is impossible. Instead, the transition can be intermediated

When ELn, we expect field induced disorder and someby defects—a=-disclination line, propagating along the
biaxiality—the field breaks the symmetry of the phase. How-wall, replaces locallyw by H, the melted order in the line
ever, experimentally it is difficult to stabilizeL E—the di-  core enabling the topological constraint escape.
electric torque favorsi|E. Even strong surface anchoring  Letus first suppose that there is no defect propagation. On
does not keep.L E—for high enough fieldgg~ &y<L (L is  Increasing the fieldSin the Wa_lll shc_JuId decr_ease, due to_the
the surface extrapolation lengfil]) and the anchoring is field action and th_e strong _d|stort|0n. At high enough field,
broken[4]. So far, field induced disorder and biaxiality have W€ €xpect a transient melting &all over the wall plane,
been reportedi5] only in the isotropic phase, perturbing the followed' by rapid reconstruc‘gon of the nema}uc order, with
surface induced order. n||E to give the textured. In this way, the transient “defect*

The nematic order decreases and even vanishes und@@ne enables a fast uniform escape from the topological
strong topological constraint, e.g. in the core of a 1/2constrain{ 7], instead of a local transition by defect lines.
strength disclination line or in a point defedf]. Due to the To detect thisW to H transition, we observe the texture

broken symmetry, the core is not isotropi8=0) but be- after the pglse. On field remlovaV,V relaxes back to the
comes strongly biaxia[6]—Q varies continuously in the highly birefringent texturéJ, while the textureH relaxes to a

core, without vanishing, enabling an escape from the topoP@lf-turn twisted texturd (Fig. 1), optically almost isotropic
logical constraint imposed on the director. in thin cells[8]. Qualitatively, we observe two different be-

Here, to study the nematic behavior under a strong eled?@Viors, presented in Fig. 2, as a functiontoand 7. Up to
tric field ELn, we use a thin cell with inverse pretilt. By & critical fieldE;=7.8 V/um, we observaV to H transition

symmetry,nl E in the middle of the cell. Above a threshold

field we observe transient “melting” of all over the cell — A \ —
midplane, with escape from the topological constraint, fol- — “ \ -
lowed by a fast reconstruction of the order with E. In a U w\ H Q T <
Landau—de Gennes model, we show that the transient melted z — = 0 R
state is a biaxial nematic and not an isotropic liquid. ILY, — 0 / 0 =
Our experimental cells are 1/m thick with inverse = y / =
pretilt ¢ (textureU in Fig. 1), ranging from 2°(brushed W J J —
polymep to 30° (SiO evaporatio)) filled with the nematic
pentyl cyanobipheny{5CB MercK. The fieldE<30 V/um FIG. 1. Textures realized in the inverse pretilt cell without field

is applied along the cell normal in short ac bursts ( (U,T) and under field W,H).
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T T T observed directly—the transition happens during the bulk re-
10+ -1, ] laxation and it is masked by the residual bulk birefringence.
E a1 Our experimental results can be understood in the frames
] of the Landau—de Gennes approach, minimizing the free en-
T (ms) 1 3 ‘:\j ; : ergy F(Q,VQ) [1]. In our geometry, the surfaces alignin
] T\ | ] the x-z plane. The electric fiel&||z induces some biaxiality
i "f-k’ b but keepsxz as a mirror plane for the texture. With this
0.14 A . 3 symmetry, the most general form of the biaxial traceless ten-
adll.s B 7 Uniform sorQ is
1 o L ! transition
0.014 Defect i 3 —a—\3Bcos20 O J3Bsin26
3 propagation |
; 5 ; . / Q== 0 2a 0
5 E. 10 15 E (V/pm) )
¢ " J3Bsin26 0 —a+.\3B8cos¥
FIG. 2. Indirect observation of thé/ to H transition under field 1)

at T.—T=5 K; (a) defect propagation foE<E., (b) uniform

melting of the wall forE = E. . Here 6 (Fig. 1) describes the rotation @ aroundy (one

of its main axefs while « andg define together the modulus
S=\a?+b? and the biaxiality [proportional to B(3a?
by defect propagation, localized in small circular domains— B?)1S%] of the order parameter.
[photograph(a) in Fig. 2]. The twisted regions first appear at  The condensation energy density becomes
7= 19 and grow with increasing, confirming defect propa-
gation. Forr= 7, all the pixel transits to the textuté (and ~ _ _ a(T ™)
thenT) by defect propagation. ¢

Above E., 7=7; and there is no more coexistencelbf (2
andT after the pulse. For< r, whole pixel (several mm)
relaxes back tdJ, for 7> 7, it changes tdrl' [photographb)
in Fig. 2], indicating a uniform melting of the wall under
field. This behavior disagrees with defect propagation, im-

———(a®+ B+ —a(a2—3B2)+ %<a2+ﬁ2>2,

where the numerical values for 5CB argl0] a
~0.13 J/(cm K), B~—1.6 J/cni, andC~3.9 J/cni.
The distortion energy density in one-constant approxima-

plying a strong stepwise increase of the defect veldgcipy/to tion is [11]

10 m/s. L[[da ap\? . [d6)\?
The W to H transition can also be detected in real time t? iQidiQi=3|| 77| T3z 74P\ %

from the cell birefringence. OpticallyV differs from H by &)

the additional birefringence of the walb{-Anéz~1 nm).
We measure it with an experimental sef@ mounted on a  with L=K/2S?~8 pN.

polarizing microscope, with a good resolution in time 4%) The electric energy density is

and in§ (0.01 nm. 2 .
For E<E.C (Fig. 3, curvea) & saturates to a first level, = =ED E,= 8lo+ (1 a+\/_,8 cos20)|

corresponding to the texturew, and then slowly 2 2

(A7,~10 ms) relaxes to a lower valuéextureH, the wall (4)

h%s. di.sappearezdgA.ra irtl)crt(eja?es with the pbse;c\_f/)atli.or;l larea, where D is the electric displacement and, o~3
Indicating a transition by defect propagatlon. slightly %101 F/m ande ,o~ 18x 10" 1 F/m are the permittivities
aboveE, (Fig. 3, curveb), the wall disappears much faster _
g of 5CB atS=1 [12].

(A7m,~100 us). A7, is independent of the observed area,
indicating a synchronous transition over the whole pijel
ther by uniform melting or by spinodal decompositioffter
thel puC:se tthe texturet relialxes tlrj]n'fforT'y ltb?rr] T fo(; | uniaxial equilibrium states of the nematic, wig= Sy(T),
tea in Fig. 3. Finally, foE> E,  the wall melting cannot be -© 219 With n,_respectively alongx (= —S/2. &

9 Y. ¢ 9 =—392), y(a=S, B=0), or zZ(a=—S/2, B=352).

The maximuml| at a=B=0 represents the isotropic state
(S=0). Along X, Y, andZ the Q tensor is uniaxial, either

Let us first consider the condensation energy of a uniform
nematic with fixed orientatio®=0 andE=0, presented in
Fig. 4. The three minim, y, and z correspond to the

‘2 3% b prolate >0 on theX,Y,Z positive sidg or oblate §<0 on
s the X,Y,Z negative side The three saddle points’, y’,
'g o0 oS 10 andz’ represent the known unstable uniaxial solutions with
o b At a S~ —Sy/2. All the other regions in the diagram represent
o 5 10 15 (ms) biaxial nematic states, never realized without constraint. We
note that the same results are obtained by fixth@t 6
FIG. 3. Direct observation of thé&/to H transition from the cell = /2 and changing the sign ¢@.
birefringence;(a) defect propagation foE<E_, (b) uniform tran- In Fig. 5, we show the energy of the uniform nematic with
sition atE=1.0%E, . 6#=0 under strong field|z. The statez (with n|z) remains
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FIG. 4. Condensation energy map for a uniform nematic with

fixed orientationd=0 (darker gray corresponds to lower energy

uniaxial, with order paramete8> S, enhanced by the field.
In the metastable statesandy, the order decreases and
becomes biaxial. WheR is increasedx andy reach, respec-
tively, the saddle pointg’ andx’, and disappear at a critical
field E.,. From the condition of double extrema fét,
+F¢, we find algebraicallf13]

BZ

CZ

3B

J48 a0

at T.—T=5 K.

WhenE>E_,, one expects a field driven transition from
the x or y state to the stable state. Due to the “frozen”
orientation @=0), this transition is realized by variation of
the Q eigenvalues. Thé trajectory(Fig. 5 explores a con-

4a(T—-T%)
C

cu

>~67vmm

tinuum of biaxial states and passes through a uniaxial oblate

state[14].

In our experiments, we expect the same kind of transition

from x to zin the wall midplane, where the topological con-
straint forbids the rotation o®. Two phenomena help the
transition and decrease the critical field for the wall melting:
the nonuniformity of the field and the distortion in the wall.
Under field most of the sample is homeotropic, wih
~g|U/d. In the middle of the wall, the field iE,=D,/e,,
~(g|/e,)U/d; three times stronger for 5CB at room tem-
perature than the average fidid=U/d.

The distortion in the wall decreases the nematic order, anc
to estimate this effect we need to consider the space variatioi,

of a, B, and #. We solve numerically the Euler-Lagrange
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FIG. 5. Total energy map for a uniform nematic under strong
field.

(~ &g) regions close to the surfaces, whereand S relax to
their bulk equilibrium values under field angl goes to#
~0. In Fig. 6, we present in theB(cos 29, Bsin 26) space
the numerically calculated patQ(z). For simplicity, we do
not present the surface regions part of the path ()
(a=~—Sy/2 and approximately constaniThe circle 8= B
=S,\/3/2 represents the equilibrium uniaxial prolate state
with S=S, and simple director rotation. The center of the
diagramD corresponds to the uniaxial oblate state w&h
< 0. All the other states inside the circly are biaxial(pro-
late close toB,, oblate close td). Far from the wall, the
nematic is in the state (=0 or 7).

B=Po

X

FIG. 6. Numerical results for the equilibrium and transi@(t)

equations at fixed, values using a relaxation algorithm and {rajectories across the wall as a function of the field. The equilib-

we obtain U by integratingD,/s,,. We impose strong
boundary conditionsas=—Sy/2, Bs=3S/2, and 65

rium states are forbidden in the shaded regi&® 0 (line); E
=E_.4/2 (open circley E=E_4 (squares andE=1.0&E_, (closed

=m/2+ . These conditions influence only the two thin circles.
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For weak fields(Fig. 6, open circlesQ explores a loop —T=5K, Eq is still two times higher tharE.. This dis-
close tog,, starting from the state(n|z), crossing the state agreement can be attributed to the known limitations of the
x(n[x), and finishing again at, but now withn||—z, accu- Landau—de Gennes approach, namely, the bad convergence
mulating a “phase shift’A 6= 7 across the wall. anh point of the Eq.(2) series, needing higher-order terfi®. More-
on the curve corresponds to a step Bglalongz to visual-  over, E./E4 varies with the temperaturéo be presented in
ize VQ. For higher fields, up to a threshol&.q  a forthcoming paper confirming the quantitative disagree-
=15.2 Vium (Fig. 6, squares the path goes deeper in the ment between the present model and the experiment. We
biaxial region, especially fo6= /2. Finally, aboveE.q,  observe qualitatively the same trends and similar values of
the Euler-Lagrange equations have no solutlon for the IME_ andE,4 for several other nematics with highe/e, an-
posed boundary conditions. In the present static model, th'%otropy, with biaxial melting of the wall observed fé,
corresponds to a first-order jump of the textMvdoward the <30 V/um even at low temperatured {— T=25 K).
hom_eotr(_)pic statéd (the pointz, With n|z andS>S, due to The shaded region in Fig. 6 corresponds to a transient
the fleld-mduced_ ordgrA dynam|cal mode_l,_ to be.presented state of the wall, melted into an unstable highly biaxial state.
elsewhere, confirms the first-order transition, with the loo he melted wall can be considered as a “core” of a transient
collapsing rapidly toward the poirzt The intermediate non- nematic two-dimensional2D) “defect,” nematic analog to
equilibrium trajectorieqe.g., Fig. 6, closed circlesxplore ' .

Lhe permanent 2D defects already reported for the smectic
phasd 15]. This 2D core enables biaxial escajiethetime)

the oblate uniaxial stat®, the phase shift across the wall : h ) >~
from the imposed topological constraint, similar to what hap-

jumps fromA 6= to A6=0, removing the initially im-

posed topological constraint. pens(in the space around the 1D core of 1/2 strength dis-
The experimentally observed thresh@gshould be com- ~ clination line. _ _ _
pared with the thresholB.4, calculated for the biaxial melt- ~ To conclude, we realize and observe experimentally a bi-

ing of the distorted wall, four times lower than the valig, ~ axial melting transition in nematic liquid crystals under
calculated for uniform nematic. The large decreas€Egf  Strong topological constraint and destabilizing electric field
(compared toE.,) results from the strong electric torque ELn. A qualitative agreement with the experiment is ob-
applied on the nematic in the regions with|~=/4, and tained in a Landau—de Gennes model. Even far away from
elastically transmitted to the middle of the wall, where thethe clearing temperature, this rapid transitiomcro second
nematic order is already destabilized by the strong distortioime scal¢ has moderate field threshold<@0 V/um),

and the direct action of the electric field. However,Tat  showing potential for rapid nematic applicatiois].
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